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Stereochemical Course of the Reaction of Iron 
Carbonyl with Diastereomeric Vinyloxiranes 

Sir: 

The reaction of the vinylcyclopropyl system with iron 
carbonyl has been investigated extensively.1 Recently the 
analogous reaction with vinyloxiranes has been reported.2 

This latter system appeared amenable to a detailed stereo­
chemical analysis, and we report results of the reaction 
using diastereomeric vinyloxiranes. 

Starting with the three pure dienes {E,E)-2,A\ (Z,Z)-2,4; 
and (Z,£')-2,4-hexadienes, monoepoxidation yielded the 
vinyloxiranes 1, 2, 3 + 4, respectively.3 Both thermally and 
photochemically these compounds reacted with iron carbon­
yl to yield ferrelactone complexes. The thermal reaction 
yielded mixtures of diastereomers5 but the photochemical 
reaction6 proceeded completely stereospecifically (Scheme 
I). 

The starting point for unraveling the stereochemical 
structures of complexes 5, 6, and 7 was an X-ray crystallo-
graphic determination on 7. With this established, N M R 
studies enabled elucidation of the structures of 5 and 6. 

Ferrelactone 7 crystallized in the centrosymmetric ortho-
rhombic space group Pbca. The cell dimensions were a = 

Scheme I 

N 5 , hV . ! f t ' 

'•(">yctH, i 
N 2 , hy 10' 

450W Hg 

(OC) 1 F. ' 

H * ' UC 
Fe(CO), .C .H, 

N 3 , t ip. TO' 

4 5 0 W Hg 

\ H* ~CH, 
I 

12.0732 (16) A, c = 12.2010 (15) A, and pcaicd = 1.575 
g/cm3 for Z = S. X-Ray diffraction data (20max = 50°, Mo 
Ka radiation) were collected with a Picker FACS-I diffrac-
tiometer and the structure was solved via Patterson, Fouri­
er, and least-squares refinement methods. The final discrep­
ancy indices were RF = 3.21%, J?WF = 3.06% for 2377 inde­
pendent reflections. The molecular structure, with selected 
bond distances, is shown in Figure 1. 

Figure 1. Molecular geometry of ferrelactone 7. Important intraligand' 
bond distances (in A) are: C(l)-C(2) = 1.503 (5), C(2)-C(3) = 1.510 
(4), C(3)-C(4) = 1.406 (3), C(4)-C(5) = 1.389 (4), C(5)-C(6) = 
1.498 (4); C(2)-0(2) = 1.438 (3), 0(2)-C(7) = 1.364 (3), C(7)-0(7) 
= 1.211 (3). Iron-carbon bond distances are: Fe-C(3) = 2.090 (2), 
Fe-C(4) = 2.077 (3), Fe-C(5) = 2.209 (3), and Fe-C(7) = 1.985 
(2). 

Using the 1H N M R spectrum of 7 as a reference the rel­
ative stereochemistries of 5 and 6 were determined by anal­
ysis of coupling constants and induced chemical shifts 
(Table I). First, comparing 5 and 7 the only difference in 
coupling constant is the vicinal coupling 3/2,3 of 4.0 Hz in 5 
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Table I NMR Data for Ferrelactones0 

Compound 

5 

6 

7 

Position 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

Chemical 
shifts 
(ppm) 

1.34 
4.39 
4.58 
4.63 
4.14 
1.88 
1.43 
4.60 
5.13 
4.31 
4.81 
1.80 
1.32 
4.25 
4.38 
4.77 
4.03 
1.84 

Coupling constants 
(Hz) 

/1>2 = 6.5 
/ 2 i 3 = 4.0 
Z 3 4 = undetermined 
^ 5 = 12-0 
/ ! | 6 = 6.0 

Z1 2 = 6.5 
< 3 = 5.2 
/1>4 = 8.7 
A,s = 9-7 
' . , . = 7-4 

Z1 j = 6.5 
/ , ; , = i.2 
' M = 7-5 
Z 4 5 =12-0 
Z5,, = 6.0 

"3NMR spectra were obtained using a Varian HA-100 or HR 220 
with TMS.as internal standard at 8 0.00 ppm and CDCl3 as solvent. 

compared to 1.2 Hz for trans 3/2,3 in 7 suggesting a cis ar­
rangement for these protons in 5. Similarly 3J*2,3 of 5.2 Hz 
in 6 indicates a cis relationship. Considering the C4 and C5 
protons, values of 12.0 Hz in 7 and 5 fix these as trans while 
a value of 9.75 Hz indicates a cis orientation in 6. Further 
evidence for.the relative stereochemistry at C4 and C5 in 5, 
6, and 7 was obtained by observing induced chemical shifts 
using Eu(fod)3. The induced downfield shifts for the C5 
proton in 5, 6, and 7 were 10.0, 9.9, and 3.8 ppm per mole 
of Eu(fod)3 per mole of ferrelactone, respectively. The 
downfield shifts for the Cs-methyl group in 7, 5, and 6 were 
2.1, 2.1, and 5.8 ppm per mole of Eu(fod)3 per mole of fer­
relactone, respectively. Assuming a model in which the shift 
reagent is coordinated with the lactone ring, the relative 
large shift of the C5 methyl group and relatively small shift 
of the C5 proton in 6 indicates a cis stereochemistry. Since 7 
is known to be trans (X-ray), similarity in its shift behavior 
with 5 indicates a trans stereochemistry for the latter. 

With the structures of ferrelactones 5, 6, and 7 estab­
lished, the stereochemical results may be summarized as 
follows: 1 -* 5 proceeds with retention of configuration 
about the C4-C5 double bond, but a change in the relative 
configuration between C2 relative to C3. This change 
amounts to rotation about the C2-C3 bond. Reaction 2 -» 6 
proceeds with overall retention of the stereochemical rela­
tionships between reactant and product. 

In the sequence of reaction steps leading to the ferrelac­
tone the generation of the allylic system is of key impor­
tance. A priori this could occur in two distinct ways, name­
ly, initial complexation of the double bond with photochem-
ically generated Fe(CO)4 followed by cleavage of the oxido 
ring and lactone formation, or, alternatively, initial com­
plexation of the oxido oxygen with the electrophilic 
Fe(CO)4 and ring cleavage followed by lactone formation. 
Since neither route uniquely accounts for the observed ste­
reochemical course, the mechanistic aspects of this reaction 
remain a continuing research objective. 
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A Novel Dehydrogenative Cis Double Silylation of 
Internal Acetylenes with Hydrosilanes. Catalysis 
by Diethyl(bipyridyl)nickel(II) 

Sir: 

There have been two types of addition reactions of silicon 
hydrides to carbon-carbon multiple bonds in the presence 
of transition metal catalysts. One is the well-known hydrosi-
lylation1 and the other the recently discovered, nickel or 
palladium catalyzed, double silylation of dienes and acety­
lenes with disilicon hydrides involving the cleavage of the 
Si-Si bond while leaving intact the Si-H bond.2 We report 
here the third type of addition reaction, viz., dehydrogena­
tive, stereoselective cis double silylation of internal acety­
lenes with monosilicon hydrides catalyzed by diethyl(bipy-
ridyl)nickel(II), as represented by eq 1. 

R C = C R + HSiX3 —*• 

R R 

^ C = C ^ + 

X3Si SiX5 

H2 + /-C = CC 
X3Si H 

(1) 
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